
Neurocomputing 175 (2016) 40–46
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

☆This
and wa

n Corr
Univers

E-m
wfjing@
wyp@tu
journal homepage: www.elsevier.com/locate/neucom
The general critical analysis for continuous-time UPPAM recurrent
neural networks$

Chen Qiao a,b, Wen-Feng Jing a, Jian Fang a,b, Yu-Ping Wang b,c,n

a School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, PR China
b Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
c Center of Genomics and Bioinformatics, Tulane University, New Orleans, LA 70112, USA
a r t i c l e i n f o

Article history:
Received 10 June 2015
Received in revised form
26 July 2015
Accepted 14 September 2015

Communicated by Ma Lifeng Ma

UPPAM network under the general critical conditions. It is shown that the UPPAM network possesses the
Available online 26 October 2015

Keywords:
Continuous-time recurrent neural network
Uniformly pseudo-projection-anti-
monotone network
General critical condition
Dynamical analysis
x.doi.org/10.1016/j.neucom.2015.09.103
12/& 2015 Elsevier B.V. All rights reserved.

research was supported by NSFC Nos. 11101
s partially supported by NIH R01 GM109068 a
esponding author at: Department of Biom
ity, New Orleans, LA 70118, USA.
ail addresses: qiaochen@mail.xjtu.edu.cn, cqia
mail.xjtu.edu.cn (W.-F. Jing), jfang3@tulane.ed
lane.edu (Y.-P. Wang).
a b s t r a c t

The uniformly pseudo-projection-anti-monotone (UPPAM) neural network model, which can be con-
sidered as the unified continuous-time neural networks (CNNs), includes almost all of the known CNNs
individuals. Recently, studies on the critical dynamic behaviors of CNNs have drawn special attentions
due to its importance in both theory and applications. In this paper, we will present the analysis of the

global convergence and asymptotical stability under the general critical conditions if the network
satisfies one quasi-symmetric requirement on the connective matrices, which is easy to be verified and
applied. The general critical dynamics have rarely been studied before, and this work is an attempt to
gain a meaningful assurance of general critical convergence and stability of CNNs. Since UPPAM network
is the unified model for CNNs, the results obtained here can generalize and extend the existing critical
conclusions for CNNs individuals, let alone those non-critical cases. Moreover, the easily verified con-
ditions for general critical convergence and stability can further promote the applications of CNNs.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The two basic elements of a recurrent neural network (RNN)
are the synaptic connections among the neurons and the non-
linear activation functions deduced from the input–output prop-
erties of the involved neurons. For applications such as associative
memory, synaptic connections among the neurons are designed to
encode the memories we hope to recover. The activation functions
are assumed to capture the complex, nonlinear response of neu-
rons of the brain. For different purpose of simulations and appli-
cations, both of them are preassigned before use. So under-
standing their properties is very important, and especially
exploring the characteristics of the activation functions is quite
crucial to determine the performance of the RNNs. For the com-
monly used RNN individuals, the activation functions are mono-
tonically nondecreasing and saturated. To study and apply RNNs
only based on such two features are far from enough. To overcome
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the non-thorough descriptions of activation functions, many spe-
cial cases of activation functions have been brought forward,
resulting in many different RNNs individuals. Furthermore, in
order to obtain more useful results of RNNs, e.g., the convergence
and stability of those individuals, additional strict requirements
are unavoidable to impose on the networks for the lack of in-depth
descriptions on the activation functions. Obviously, since those
individuals are studied separately, it is inevitable that there exist
large numbers of redundancy of analysis for those individual
models. In order to reduce the superabundance, establishing a
harmonization methodology is a challenging work.

In [16], Xu and Qiao put forward two novel concepts: uniformly
anti-monotone and the pseudo-projection properties of the acti-
vation functions, which discover more essential characteristics
other than the nondecreasing and bounded properties of the
commonly used activation functions. It is shown that the proposed
uniformly pseudo-projection anti-monotone (UPPAM) operator
can embody most of the activation operators (the precise defini-
tion of uniformly pseudo-projection-anti-monotone operator will
be given in Section 2), e.g., nearest-point projection, linear satur-
ating operator, signum operator, symmetric multi-valued step
operator, multi-threshold operator, and winner-take-all operator.
Thus, the UPPAM operator can be considered as a framework of
formalizing most of the activation operators of RNNs.
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In this paper, we use the concept of UPPAM operators to
establish a unified model for continuous-time RNNs. Let us con-
sider the following continuous-time UPPAM RNNs model:

τ
dxðtÞ
dt

¼ �xðtÞþAGðWxðtÞþqÞþb; x0ARN ð1Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xNðtÞÞT is the neural network state,
G¼ ðg1; g2;…; gNÞT is the nonlinear activation operator deduced
from all the activation functions gi, and G owns the uniformly
pseudo-projection-anti-monotone property. Both A and W are the
connective weight matrices, b, q are two fixed external bias vectors
and τ is the state feedback coefficient. The form of model (1)
includes two basic kinds of continuous-time RNNs [17], i.e., the
static RNNs and the local field RNNs. Furthermore, as proved in
[16], most activation operators are special cases of the UPPAM
operator. So, model (1) can be considered as a unified model of
continuous-time RNNs and can include almost all of the existing
continuous-time RNNs specials [4], e.g., Hopfield-type neural
networks, Brain-State-in-a-Box neural networks, Recurrent Back-
propagation neural networks, Mean-field neural networks, Bound-
constraints Optimization Solvers, Convex Optimization Solvers,
Recurrent Correlation Associative Memories neural networks, and
Cellular neural networks. In addition, since model (1) owns the
essential characteristics of the activation functions, i.e., the uni-
formly anti-monotone as well as the pseudo-projection properties,
it can be expected that the analysis of model (1), especially the
dynamics analysis can give more in-depth results and provide the
unified and concise characterization of the continuous-time RNNs
models. The main purpose of this paper will focus on discovering
some essential global convergence and stability for the unified
model (1), i.e., the critical convergence and stability.

For RNNs, one difficult problem of dynamics analysis lies in the
critical analysis. Define a discriminant matrix

SðΓ; PÞ ¼ΓP�ΓAWþðΓAWÞT
2

;

where Γ is a positive definite diagonal matrix, P is a diagonal
matrix defined by the network, and W and A are the weight
matrices. If there exist a positive definite diagonal matrix Γ, such
that SðΓ;2Λ�BÞ40 (i.e., SðΓ;2Λ�BÞ is positive definite), where Λ
and B are the anti-monotone and pseudo-projection constant
matrices of the network (the definitions of them are given in
Section 2), then RNNs have exponential stability [4]. Many stability
results have been achieved for RNNs individuals under various
specifications of SðΓ;2Λ�BÞ40 (typically, when SðΓ;2Λ�BÞ40 is
an M-matrix), and they are called as the non-critical dyn-
amical analysis [1]. On the other hand, if there exists a positive
definite diagonal matrix Γ such that SðΓ;VÞ is negative definite,
here V ¼ diagfr1; r2;…; rNg with each ri40 being the maximum
inversely Lipschitz constant of gi (i.e., for all s; tARN , jgiðtÞ�giðsÞj
Zri j t �sj ), then RNNs are globally exponentially unstable [7,1].
Since SðΓ;2Λ�BÞ40 is the sufficient condition on the globally
exponential stability of RNNs, and SðΓ;VÞZ0 is the necessar-
ycondition for RNNs to be globally stable, it is quite natural to
explore the gap between SðΓ;2Λ�BÞr0 (i.e., SðΓ;2Λ�BÞ is
negative semi-definite) and SðΓ;VÞZ0 (i.e., SðΓ;VÞ is positive
definite). Such a gap is called the general critical condition, and the
dynamics analysis of RNNs under such condition is referred to as
the general critical dynamics analysis.

For any application and practical design of RNNs, such as pat-
tern recognition, associative memories, or as optimization solvers,
the convergence and stability of RNNs are both prerequisite. For
instance, when an RNN is used in associative memory or pattern
recognition, any pattern we hope to store has to be an equilibrium
point of the RNN. In addition, to ensure that each stored pattern
can be retrieved even with noises, each equilibrium point must
possess the stability. When the RNN is employed as an optimiza-
tion solver, the possible optimal solutions correspond to the
equilibrium of the RNN, and the convergence of the RNN is a
guarantee of finding the optimal solutions. Since the general cri-
tical conditions can be considered essentially as the distinct region
of stability and non-stability of RNNs, studying the general critical
dynamic behaviors of an RNN can find broad applications.

Recently, due to the difficulty in the dynamical analysis of RNNs
for general critical conditions, most of the studies on critical
analysis have been focused on the special critical conditions, i.e.,
considering the asymptotic behaviors of RNNs under the condition
that SðΓ;2Λ�BÞZ0 (this is because SðΓ;2Λ�BÞ40 is already
known to be globally exponential stable and SðΓ;2Λ�BÞ ¼ 0 is a
special case of the general critical condition). Even for this special
critical condition, there only exist a few results since the analysis is
much more difficult than the dynamics analysis under the non-
critical condition that SðΛ; LÞ40. In [15], the globally exponential
stability of a static neural network with projection operator (a
special kind of UPPAM operator) has been proven under the con-
dition that I–W is nonnegative (which is a special case of
SðΓ;2Λ�BÞZ0). The special critical convergence of a static neural
network model with nearest point projection activation operator
(special case of projection operator) on a region defined by the
network has been achieved in [1] when W is quasi-symmetric.
Some general critical stability conclusions for the static and the
local field continuous-time RNNs with projection activation
operators have been achieved in [2], but they require the network
to satisfy one bounded matrix norm. In [4], for the presented
unified continuous-time RNNs, namely, UPPAM RNNs, the special
critical global convergence is obtained with some bound require-
ments on the defined nonlinear norm, but such requirements
cannot be verified easily in applications. In [5], some improve-
ments on dynamics analysis of the UPPAM networks have been
obtained, while they are still under the special critical conditions.

In the present paper, we give some solutions on how to assure
the convergence and stability under the general critical conditions.
By applying the energy function method and LaSalle invariance
principle to the unified continuous-time RNNs model (1), we
obtain the global convergence and asymptotic stability under
some general critical conditions, that is, SðΓ;2Λ�BÞþΨ is positive
definite for one diagonal matrix Ψ. The results only require the
network to satisfy some quasi-symmetric conditions on the con-
nection matrices. Since the conclusions obtained here are for the
unified RNNs model under the general critical conditions, they can
sharpen and generalize, to a large extent, the latest critical results
given by [1,2,4,5,15], and they can further be extended to those
non-critical conclusions (see, e.g., [6–14,18–25] and the references
quoted there). Furthermore, they can be applied directly to many
individual RNN models mentioned above. They can be widely
applied to solve the linear variational inequality and many other
optimization problems, etc. Therefore, the study here provides an
insight on the unified continuous-time RNNs model with critical
analysis.
2. Preliminaries

For the activation operator G, the domain, range and fixed-
point set of G are respectively defined by DðGÞ, RðGÞ and FðGÞ, and
DðGÞ ¼ RðGÞDRN . Assume that RN is embedded with Euclidean
norm J � J and inner product 〈�; �〉.

For any x¼ ðx1; x2;…; xNÞT ADðGÞ; write

GðxÞ ¼ ðg1ðxÞ; g2ðxÞ;⋯; gNðxÞÞT ; 8xADðGÞ
G is said to be diagonal if giðxÞ ¼ giðxiÞ holds for each i¼ 1;2;…;N.
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Definition 2.1 (Xu and Qiao [16]). (i) An operator G is said to be a
pseudo-projection if there exists a positive definite diagonal
matrix B¼ diagfβ1;β2;…;βNg, such that BRðGÞDDðGÞ and G¼GBG
(i.e., GðxÞ ¼ GðBGðxÞÞ, 8xADðGÞÞ. In this case, we say that G is a B-
projection.

(ii) An operator G is said to be λ-uniformly anti-monotone
(λ�UAM) if there is a positive constant λ such that for any xADðGÞ
and yABRðGÞ,
〈GðxÞ�GðyÞ; x�y〉ZλJGðxÞ�GðyÞJ22 ð2Þ

(iii) An operator G is uniformly pseudo-projection-anti-
monotone (UPPAM) if it is pseudo-projection and uniformly anti-
monotone; specially, we say it is ðB; λÞ-UPPAM whenever it is B-
projection and λ-UAM.

Definition 2.2. Let Λ¼ diagfλ1; λ2;…; λNg and B¼ diagfβ1;β2;…;

βNg. G is said to be diagonally ðB;ΛÞ-UPPAM if each component gi
of G is a βi-projection and λi-UAM.

In [16], it is shown that most of the activation operators of
RNNs in the literature are special cases of UPPAM operators. Thus,
the RNNs with UPPAM operators, i.e., the uniformly pseudo-
projection-anti-monotone neural networks provide an appro-
priate and unified framework, within which most of the known
RNN models can be embedded and uniformly studied.

Throughout the paper, the identity matrix is denoted by I. For a
positive semi-definite diagonal matrix Δ¼ diagfδ1; δ2;…; δNg, let
Δ

1=2 ¼ diagfδ1=21 ; δ1=22 ;…; δ1=2N g.
3. General critical dynamic results

In this section, under the general critical conditions, results on
global convergence and asymptotic stability for the unified
continuous-time RNN model are established, which are quite easy
to be verified in applications. In the following, we denote the
equilibrium state set of (1) by F �1

e ð0Þ, and the range of nonlinear
activation operator, i.e., RðGÞ, by Θ. Throughout this paper, we
suppose that Θ is bounded, closed and convex.

Lemma 3.1. For any x0AAðΘÞþb, xðt; x0Þ, the solution of (1), satis-
fies xðt; x0ÞAAðΘÞþb (tZ0).

Proof. With the differential equation theory, we have

xðt; x0Þ ¼ e� t=τx0þ
1
τ
e� t=τ

Z t

0
es=τðAGðWxðsÞþqÞþbÞ ds

¼ e� t=τx0þð1�e� t=τÞ
R t=τ
0 e� rðAGðWxðt�τrÞþqÞþbÞ dr

1�e� t=τ ð3Þ

where r¼ t� s
τ . Since 1�e� t=τ ¼ R t=τ

0 e� r dr¼ limn-þ1
Pn

i ¼ 1
t
τne

� it=τn, and AðΘÞþb is a bounded, closed and convex subset, then
PðtÞ≔ R t=τ

0 e� rðAGðWxðt�τrÞþ qÞþbÞ dr, the limit of the sum
Pn

i ¼ 1
t
τne

� it=τn ðAGðWxðt� it
nÞþqÞþbÞ, should satisfy PðtÞ

1� e� t=τA AðΘÞþb ð8 t
Z0Þ. Further, by (3), we know xðt; x0ÞAAðΘÞþb when x0AAðΘÞ
þb.□

For any vAΘ, we define TðvÞ ¼ AGðWvþqÞþb. Since that Θ is
bounded, closed and convex, then by Brouwer's fixed point theo-
rem, T has at least one fixed point vn, so namely, F �1

e ð0Þ is not
empty.

Theorem 3.1. Assume that G is diagonally ðB;ΛÞ-UPPAM with Θ
being a bounded, closed and convex subset of RN, and A is a nonzero
diagonal matrix. If there exists a positive definite diagonal matrix Γ
and a diagonal matrix Ψ, such that ð2Λ�BÞΓ�ΓAWþΨ is positive
definite, QAW is symmetric (here Q ¼ ðð2Λ�BÞΓþΨ ÞΛ�1) and Q is a
positive definite diagonal matrix, then RNN model (1) is globally
convergent on AðΘÞþb when F �1
e ð0Þ is disconnected. Moreover, when

xn is the unique equilibrium point of (1), then xn is globally asymp-
totically stable on AðΘÞþb.

Proof. Denote A¼ diagfa1; a2;…; aNg, Γ ¼ diagfξ1; ξ2;…; ξNg, D¼
diagfd1; d2;…;dNg and Ψ ¼ diagfφ1;φ2;…;φNg. For any trajectory x
(t) of (1) starting from x0AAðΘÞþb, it follows from Lemma 3.1 that
xðtÞAAðΘÞþb. Let y0 ¼Wx0þq, yðtÞ ¼WxðtÞþq, zðtÞ ¼ AGðyðtÞÞþb
and uðtÞ ¼ zðtÞ�xðtÞ.

Let

EðxðtÞÞ ¼ τ
2
xT ðtÞðQB�ðQþΓÞAWÞxðtÞ�τðQAqÞTxðtÞ�τðQBbÞTxðtÞ

þτ
XN
i ¼ 1

ξiai
Z ðWxðtÞþqÞi

ðWx0 þqÞi
ðaigiðsÞþbiÞ ds

Since xðtÞAAðΘÞþb, there exists pðtÞAΘ, such that
xðtÞ ¼ ApðtÞþb. Then, ApðtÞ ¼ xðtÞ�b. Meanwhile, noting that QB,
QAW and ΓAW are all symmetric, and thus WT ðΓAÞ ¼ ðΓAWÞT ¼
ΓAW for the case that both A and Γ are diagonal. Then, a direct
calculation shows

dEðxðtÞÞ
dt

¼ 〈ðQB�ðQþΓÞAWÞxðtÞ;uðtÞ〉� 〈QAq;uðtÞ〉� 〈QBb;uðtÞ〉þ 〈ΓAzðtÞ;WuðtÞ〉

¼ �〈QAWxðtÞ;uðtÞ〉� 〈QAq;uðtÞ〉
þ 〈QBxðtÞ;uðtÞ〉� 〈QBb;uðtÞ〉þ 〈ΓAWzðtÞ;uðtÞ〉� 〈ΓAWxðtÞ;uðtÞ〉

¼ �〈QAðWxðtÞþqÞ;uðtÞ〉þ〈QBðxðtÞ�bÞ;uðtÞ〉
þ 〈ΓAWzðtÞ; uðtÞ〉� 〈ΓAWxðtÞ;uðtÞ〉

¼ �〈QAyðtÞ;uðtÞ〉þ 〈QBApðtÞ;uðtÞ〉þ 〈ΓAWzðtÞ;uðtÞ〉� 〈ΓAWxðtÞ;uðtÞ〉
¼ �〈QAyðtÞ;uðtÞ〉þ 〈QABpðtÞ;uðtÞ〉þ 〈ΓAWðzðtÞ�xðtÞÞ;uðtÞ〉
¼ �〈QAðyðtÞ�BpðtÞÞ;uðtÞ〉þ〈ΓAWuðtÞ;uðtÞ〉
¼ �〈QAðyðtÞ�BpðtÞÞ;uðtÞ〉�〈ðð2Λ�BÞΓþΨ �ΓAWÞuðtÞ;uðtÞ〉

þ 〈ðð2Λ�BÞΓþΨ ÞuðtÞ;uðtÞ〉 ð4Þ
Since G is a B-projection and pðtÞAΘ, it is clear that GðBpðtÞÞ ¼ pðtÞ.
Denote the diagonal matrix Q ¼ diagfq1; q2;…; qNg. By the diagonal
nonlinear property of G, one can get that

� 〈QAðyðtÞ�BpðtÞÞ;uðtÞ〉

¼ �
XN
i ¼ 1

aiqiððWxðtÞþqÞi�βipiðtÞÞ � ððaigiððWxðtÞþqÞiÞþbiÞ�ðaipiðtÞþbiÞÞ

¼ �
XN
i ¼ 1

a2i qiððWxðtÞþqÞi�βipiðtÞÞ � ðgiððWxðtÞþqÞiÞ�giðβipiðtÞÞÞ

For each component gi of G being a βi-projection and λi-UAM, we
have

ððWxðtÞþqÞi�βipiðtÞÞ � ðgiððWxðtÞþqÞiÞ�giðβipiðtÞÞÞZλi giððWxðtÞþqÞiÞ�giðβipiðtÞÞ
� �2

Further, since both Q and Λ are positive definite diagonal matrices,
we have

� 〈QAðyðtÞ�BpðtÞÞ;uðtÞ〉r�
XN
i ¼ 1

a2i qiλi gi ðWxðtÞþqÞi
� ��giðβipiðtÞÞ

� �2

¼ �
XN
i ¼ 1

qiλi aiðgiððWxðtÞþqÞiÞ�piðtÞÞ
� �2

¼ �ðAðGðWxþqÞ�pðtÞÞÞTΛQ ðAðGðWxþqÞ�pðtÞÞÞ

¼ �uT ðtÞQΛuðtÞ
¼ � 〈ðð2Λ�BÞΓþΨ ÞuðtÞ;uðtÞ〉 ð5Þ

Then from (4), we directly have

dEðxðtÞÞ
dt

r� 〈ðð2Λ�BÞΓþΨ �ΓAWÞuðtÞ;uðtÞ〉 ð6Þ



Fig. 1. Transient behaviors of RNN in system (8) with random initial points x0ARðGÞ.
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By S¼ ð2Λ�BÞΓ�ΓAWþΨ being positive definite, we get that
λminðSÞ40. From (6), we know

dEðxðtÞÞ
dt

r�λminðSÞJzðtÞ�xðtÞJ22 ð7Þ

Obviously, it can be deduced that dEðxðtÞÞ
dt r0, and the equal sign

holds if and only if zðtÞ ¼ xðtÞ, i.e., xðtÞAF �1
e ð0Þ. Moreover, si-

nce xðtÞAAðΘÞþb is bounded and F �1
e ð0Þ is disconnected, then by

LaSalle invariance principle [26], we know that RNN model (1) is
globally convergent on Θ. Furthermore, when F �1

e ð0Þ ¼ fxng, it is
easy to deduce that xn is both attractive and stable on AðΘÞþb
since AðΘÞþb is bounded, i.e., xn is globally asymptotically stable
on AðΘÞþb. Thus, Theorem 3.1 is proved.□

Corollary 3.1. Assume that G is diagonally ðB;ΛÞ-UPPAM with Θ
being a bounded, closed and convex subset of RN , and A is a nonzero
diagonal matrix. If there exists a positive definite diagonal matrix Γ
such that Γð2Λ�AWÞ is positive definite, then RNN model (1) is
globally convergent on AðΘÞþb when F �1

e ð0Þ is disconnected.
Moreover, when xn is the unique equilibrium point of (1), then xn is
globally asymptotically stable on AðΘÞþb.

Proof. Let Ψ ¼ BΓ in Theorem 3.1, then we have ð2Λ�BÞΓ�ΓAW
þΨ ¼Γð2Λ�AWÞ. Since both Λ and Γ are diagonal and positive
definite matrices, we have Q ¼ 2ΛΓΛ�1 ¼ 2Γ is positive definite
diagonal matrix, and QAW ¼ 2ΓAW is obviously symmetric by the
positive definite requirement of Γð2Λ�AWÞ. So the corollary fol-
lows directly from Theorem 3.1.□

Remark 3.1. Studying the dynamic behaviors of unified model (1)
can provide uniform results for RNNs and thus can deduce the
numerous redundancy existing in the RNNs individuals. Further,
since model (1) owns the pseudo-projection as well as the anti-
monotone property, then by utilizing these two properties, we can
obtain some meaningful conclusions.

Recently, the dynamic studies of RNNs have attracted great
interest in the critical analysis. It should be pointed out that due to
the difficulty in analysis, most of them are based on the special
critical conditions, i.e., discriminant matrix SðΓ;2Λ�BÞ is positive
semi-definite. In addition, in order to assure the stability, some
other restrictions are required on the networks [1,2,4,5,15].
Obviously, just studying the special critical dynamics is far from
enough in both theory and applications, and additional require-
ments on the networks are quite hard for applications.

Theorem 3.1 and Corollary 3.1 exploit new methods to assure the
global asymptotical stability and global convergence for the unified
continuous-time RNN model (1). The results obtained here are under
the general critical conditions, and do not need difficultly verified
requirements. For Theorem 3.1, in addition to the general critical
conditions, it only requires the UPPAM network to meet quasi-
symmetric conditions. That is because, in the sense of positive defi-
nite, one can easily choose a diagonal matrix Ψ in Theorem 3.1



Fig. 2. Transient behaviors of RNN in system (9) with random initial points x0ARðGÞ.
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satisfying Ψ4 ðB�2ΛÞΓ, where B, Λ and Γ all are positive definite
matrices. Thus, Q is positive definite. Then by Theorem 3.1, in order to
assure the global stability and convergence, we only need to verify
that QAW is symmetric, where both A andW are connection matrices
of the network. Corollary 3.1 shows that existing critical results are
the special cases of the results obtained in this paper. The critical
condition that Γðð2Λ�BÞ�AWÞZ0 in [1,4,5,15] is a special case of
ð2Λ�BÞΓ�ΓAWþΨZ0. Further, since both Γ and B are positive
definite diagonal matrices, thus Γðð2Λ�BÞ�AWÞZ0 is a particular
case of Γð2Λ�AWÞ40. The latter is just the only requirement in
Corollary 3.1 to guarantee the global stability and convergence for
model (1). The critical dynamic conclusions of Theorem 3.1 and
Corollary 3.1 not only summarize, but also deepen to a large extent
most of the existing results for the RNNs individuals.
4. Illustrative examples

In this section, we provide two illustrative examples to
demonstrate the validity of the critical convergence and stability
results formulated in the previous section. It should be noticed
that the known stability and convergence results developed in
literature cannot be applied here.
Example 4.1. Consider the following UPPAM RNN:

τ
dxðtÞ
dt

¼ �xðtÞþAGðWxðtÞþqÞþb; x0AR6 ð8Þ

here each gi (i¼ 1;2;…;6) is defined as follows:

giðsÞ ¼
1; s41=i
ins; sA ½�1=i;1=i�
�1; so�1=i

8><
>:

In this example,

W ¼

3:8640 2:5440 4:7200 4:7480 2:4920 3:3960
�1:7989 �1:9307 �1:9516 �2:0704 �1:3237 �1:7225
2:7251 1:5935 3:5839 3:0946 1:4318 2:4942
�2:3740 �1:4640 �2:6800 �2:7505 �1:0970 �1:9410
1:1145 0:8372 1:1091 0:9812 0:7587 0:8130
�1:3864 �0:9945 �1:7636 �1:5848 �0:7422 �1:2680

0
BBBBBBBB@

1
CCCCCCCCA

and A¼ diagf�1;2; �3;4; �5;6g, q¼ ½�1:2290; �0:9133;0:1524;
2:8258; �1:5383;0:9961�T , b¼ ½�1:782;1:4427; �0:1067;1:9619;
3:0046; �2:7749�T .

In addition, Λ¼ B¼ diagf1;1=2;1=3;1=4;1=5;1=6g, and the
equilibrium state set, F �1

e ð0Þ, is a single state set, which contains
only one state ð�1; �2:5; �3;4;5;0ÞT .
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For this UPPAM network, almost all of the existing stability
conclusions cannot be used here. That is because for any
positive definite diagonal matrix Γ, ð2Λ�BÞΓ�ΓAW is neither
positive definite nor positive semi-definite, so all the non-
critical and the special critical dynamical results (see, the
reference mentioned in the Introduction section) are not
suitable here. In addition, since this example is for the unified
RNNs model, it is totally hard to calculate the nonlinear norm
of the network, and the conclusions in [2] cannot be
used here.

In what follows, we will show that Theorem 3.1 establis-
hed in this paper can be successfully applied here. By setti-
ng Γ ¼ diagf1;1=

ffiffiffi
2

p
;1=

ffiffiffi
3

p
;1=

ffiffiffi
4

p
;1=

ffiffiffi
5

p
;1=

ffiffiffi
6

p
g and Ψ ¼ΛΓ, we

have ð2Λ�BÞΓ�ΓAWþΨZ0;Q ¼ ðð2Λ�BÞΓþΨ ÞΛ�1Þ is a posi-
tive definite diagonal matrix and QAW is symmetric. Then by
Theorem 3.1, it is quite easy to achieve the global convergence of
network (8) on AðΘÞþb with Θ¼ ½�1;1�6. Fig. 1 depicts the time
responses of neural state variables of the system starting randomly
from AðΘÞþb.

Example 4.2. Consider another UPPAM RNN:

τ
dxðtÞ
dt

¼ �xðtÞþAGðWxðtÞþqÞþb; x0ARN ð9Þ

where each gi ði¼ 1;2;⋯;NÞ is defined as follows:

giðsÞ ¼minðmaxð�1; sÞ;1Þ
W ¼ ðWijÞN�N with each Wij is

Wij ¼
ð�1Þiþ1 � 1

NðN�1Þ þ
1

iNðN�1Þ

� �
; ia j

ð�1Þiþ1 � 1
i
� 1
N

þ 1
iNðN�1Þ

� �
; i¼ j

8>>><
>>>:

ð10Þ

and A¼ diagfa1; a2;⋯; aNg with each ai ¼ ð�1Þi�1 � i. q and b are
two N-dim vectors, qi ¼ ð�1Þiþ1½1þð1i� 1

Nþa
iÞþðN� iÞ � ðaþa

iÞ� and
bi ¼ ð�1Þii.

In this case, Λ¼ B¼ I. For any positive diagonal matrix Γ;Γð2
Λ�B�AWÞ is not positive semi-definite, i.e., the latest critical
results in [5] and other recent results for the special critical ana-
lysis, e.g., [2–4] all cannot be used for this example. When
Γ ¼ diagf1;1=2;…;1=Ng, it is easy to verify that Γð2Λ�AWÞ is
positive definite. Then by Corollary 3.1, network (9) is global
convergent to the unique equilibrium, i.e., the origin. Fig. 2 depicts
the time responses of neural state variables of network (9) with
N¼3 starting randomly from AðΘÞþb, where Θ¼ ½�1;1�3.
5. Conclusion

In the present paper, based on the unified RNN model, i.e., the
uniformly pseudo-projection-anti-monotone RNNs model, the
corresponding global convergence and the global asymptotic sta-
bility under the general critical conditions are given. In addition to
the general critical conditions, our conclusions only require that
the synaptic connective matrices defined by the network are
quasi-symmetric. Compared the existing dynamical analysis
results for RNNs, the conclusions obtained here demonstrate
several advantages. Firstly, they are given under the general cri-
tical conditions, which have scarcely been studied before. Sec-
ondly, they are for the unified RNN model, so they can be applied
to almost all of the existing individuals of RNNs and can be used
directly in applications. Finally, with our results there is no need to
verify additional intricate requirements on the network, so they
can be easily used. In summary, the results achieved here are a
significant step towards establishing a unified theory for the
dynamics of recurrent neural networks.
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